• strict warning: Non-static method view::load() should not be called statically in D:\webpage\e01\sites\all\modules\views\views.module on line 879.
  • strict warning: Declaration of views_handler_filter::options_validate() should be compatible with views_handler::options_validate($form, &$form_state) in D:\webpage\e01\sites\all\modules\views\handlers\views_handler_filter.inc on line 589.
  • strict warning: Declaration of views_handler_filter::options_submit() should be compatible with views_handler::options_submit($form, &$form_state) in D:\webpage\e01\sites\all\modules\views\handlers\views_handler_filter.inc on line 589.
  • warning: Creating default object from empty value in D:\webpage\e01\sites\all\modules\date\date\date.module on line 661.


我们以“lithium”和“batter*”为关键词检索了Web of Science 从2012 年12 月1 日至2013 年1 月31 日上线的有关锂电池研究的论文,并选取其中100 篇加以评论。我们将这100篇论文列在下面,便于大家检索。



相关文章发表在 2013年2月出版的 《储能科学与技术》第二卷第二期上


文章摘要:层状氧化物正极材料继续受到关注的同时,高容量的Si 基负极材料一直是研究的热点,然而其体积膨胀、长循环效率低的缺点尚未被克服。固态电解质是解决锂离子电池安全问题的方案之一,但从目前的研究水平来看距离实际应用还有很长的路要走。新的聚合物电解质和具有高能量密度的Li-O2和Li-S电池也是研究热点,除了这些以材料为主的研究之外,针对电池特性和电池应用的研究论文也逐渐增多,对电池技术的创新也将产生促进作用。




[1] Lee Y R,Woo M A,Lee K M,et al. A layer-by-layer assembly route to Mn1/3Co1/3Ni1/3O2 hollow spheres with electrochemical activity [J]. Journal of Physics and Chemistry of Solids,2012,73(12):1492-1495.
[2] Liu W,Wang M,Gao X L,et al. Improvement of the high-temperature,high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating [J]. Journal of Alloys and Compounds,2012,543:181-188.
[3] Liu X Z,Li H Q,Yoo E,et al. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2:Towards high-performance cathode materials for lithium ion batteries [J]. Electrochimica Acta,2012,83:253-258.
[4] Park J,Kalnaus S,Han S,et al. In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes [J]. Journal of Power Sources,2013,222:417-425.
[5] Cho S W,Kim G O,Ju J H,et al. X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.8Co0.15Al0.05)(0.8)(Ni0.5Mn0.5)(0.2)O2 with a core-shell structure and LiNi0.8Co0.15Al0.05O2 as cathode materials[J]. Materials Research Bulletin,2012,47(10):2830-2833.
[6] H Y S,Su W N,Chen J M,et al. Soft X-ray absorption spectroscopic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries [J]. Journal of Physical Chemistry C,2012,116(48): 25242-25247.
[7] Liu J L,Chen L,Hou M Y,et al. General synthesis of xLi(2)MnO(3)center dot(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method:Towards a high capacity and high power cathode for rechargeable lithium batteries[J]. Journal of Materials Chemistry,2012,22(48):25380-25387.
[8] Snook G A,Huynh T D,Hollenkamp A F,et al. Rapid SECM probing of dissolution of LiCoO2 battery materials in an ionic liquid[J]. Journal of Electroanalytical Chemistry,2012,687:30-34.
[9] Dearden C,Zhu M H,Wang B B,et al. Synthesis,size reduction,and delithiation of carbonate-free nanocrystalline lithium nickel oxide[J]. Journal of Materials Science,2013,48(4):1740-1745.
[10] Titov A A,Eremenko Z V,Goryacheva E G,et al. Synthesis,structure,and some properties of LiNi1/3Co1/3Mn1/3O2 [J]. Inorganic Materials,2013,49(2):202-208.
[11] Kim S,Kim C,Jhon Y I,et al. Synthesis of layered-layered 0.5Li(2)MnO(3)center dot 0.5LiCoO(2) nanocomposite electrode materials by the mechanochemical process and first principles study[J]. Journal of Materials Chemistry,2012,22(48):25418-25426.
[12] Qiao Z,Sha O,Tang Z Y,et al. Surface modification of LiNi0.5Mn1.5O4 by LiCoO2/Co3O4 composite for lithium-ion batteries[J]. Materials Letters,2012,87:176-179.
[13] Ati M,Sathiya M,Boulineau S,et al. Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode[J]. Journal of the American Chemical Society,2012,134(44):18380-18387.
[14] Habrioux A,Surble S,Berger P,et al. Nuclear microanalysis of lithium dispersion in LiFePO4 based cathode materials for Li-ion batteries[J]. Nuclear Instruments & Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2012,290:13-18.
[15] Theil S,Fleischhammer M,Axmann P,et al. Experimental investigations on the electrochemical and thermal behavior of LiCoPO4-based cathode[J]. Journal of Power Sources,2013,222:72-78.
[16] Nagpure S C,Bhushan B,Babu S S. Raman and NMR studies of aged LiFePO4 cathode[J]. Applied Surface Science,2012,259:49-54.
[17] Dimesso L,Becker D,Spanheimer C,et al. Investigation of graphitic carbon foams/LiNiPO4 composites[J]. Journal of Solid State Electrochemistry,2012,16(12): 3791-3798.
[18] Perea A,Sougrati M T,Ionica-Bousquet C M,et al. Operando Fe-57 Mossbauer and XRD investigation of LixMnyFe1-yPO4/C composites (y=0.50; 0.75)[J]. Rsc. Advances,2012,2(25):9517-9524.
[19] Devaraju M K,Tomai T,Unemoto A,et al. Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications [J]. Rsc. Advances,2013,3(2): 608-615.
[20] Liu X H,Wang J W,Huang S,et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology,2012,7(11):749-756.
[21] Nguyen H T,Zamfir M R,Duong L D,et al. Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes[J]. Journal of Materials Chemistry,2012,22(47):24618-24626.
[22] Hwa Y,Park C M,Sohn H J. Modified SiO as a high performance anode for Li-ion batteries[J]. Journal of Power Sources,2013,222:129-134.
[23] Hang T,Nara H,Yokoshima T,et al. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries[J]. Journal of Power Sources,2013,222:503-509.
[24] Iwamura S,Nishihara H,Kyotani T. Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling[J]. Journal of Power Sources,2013,222:400-409.
[25] Dai F,Yi R,Gordin M L,et al. Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life[J]. Rsc. Advances,2012,2(33):12710-12713.
[26] He Y,Wang Y H,Yu X Q,et al. Si-Cu thin film electrode with Kirkendall voids structure for lithium-ion batteries[J]. Journal of the Electrochemical Society,2012,159(12):A2076-A2081.
[27] Duan B C,Wang W K,Zhao H L,et al. Nano-Sn/mesoporous carbon parasitic composite as advanced anode material for lithium-ion battery[J]. Journal of the Electrochemical Society,2012,159(12):A2092-A2095.
[28] Liu B,Abouimrane A,Ren Y,et al. New anode material based on SiO-SnxCoyCz for lithium batteries[J]. Chemistry of Materials,2012,24(24):4653-4661.
[29] Kim M,Kim J W,Sung M S,et al. Si nanocrystallites embedded in hard TiFeSi2 matrix as an anode material for Li-ion batteries[J]. Journal of Electroanalytical Chemistry,2012,687:84-88.
[30] Kushima A,Huang J Y,LI J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ tem tensile experiments [J]. Acs. Nano,2012,6(11):9425-9432.
[31] Ishii Y,Okamura K,Matsushita T,et al. Origin of high power performance of mesoporous carbon-TiO2(B) nanocomposite electrodes: An in situ synchrotron X-ray diffraction study of TiO2(B) electrode upon lithium insertion [J]. Materials Express,2012,2(1):23-36.
[32] Kim J C,Hwang I S,Seo S D,et al. Superior long-term cycling stability of SnO2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries [J]. Nanotechnology,2012,23(46):465402.
[33] Wang J Z,Du N,Wu H,et al. Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries [J]. Journal of Power Sources,2013,222:32-37.
[34] Jia X L,Chen Z,Cui X,et al. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries [J]. Acs. Nano,2012,6(11):9911-9919.
[35] Wang C D,Zhang Q M,Wu Q H,et al. Facile synthesis of laminate-structured graphene sheet-Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries [J]. Rsc. Advances,2012,2(28):10680-10688.
[36] Chen P,Guo L,Wang Y. Graphene wrapped snco nanoparticles for high-capacity lithium ion storage[J]. Journal of Power Sources,2013,222:526-532.
[37] Marino C,Sougrati M T,Gerke B,et al. Role of structure and interfaces in the performance of TiSnSb as an electrode for Li-ion batteries [J]. Chemistry of Materials,2012,24(24):4735-4743.
[38] Shen L F,Uchaker E,Zhang X G,et al. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries [J]. Advanced Materials,2012,24(48):6502-6506.
[39] Wu C Y,Wang Y X,Xie J,et al. Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries [J]. Journal of Solid State Electrochemistry,2012,16(12):3915-3921.
[40] Song H,Yun S W,Chun H H,et al. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries [J]. Energy & Environmental Science,2012,5(12):9903-9913.
[41] Prikhodchenko P V,Gun J,Sladkevich S,et al. Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode [J]. Chemistry of Materials,2012,24(24):4750-4757.
[42] Yuan F W,Yang H J,Tuan H Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization [J]. Acs. Nano,2012,6(11):9932-9942.
[43] Chen Y M,Lu Z G,Zhou L M,et al. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries [J]. Nanoscale,2012,4(21):6800-6805.
[44] Choi S,Lee J I,Park S. Patterning of electrodes for mechanically robust and bendable lithium-ion batteries [J]. Journal of Materials Chemistry,2012,22(42):22366-22369.
[45] Matsumoto K,Endo T,Katsuda K,et al. Synthesis of polycarbosilanes having a five-membered cyclic carbonate structure and their application to prepare gel polymer electrolytes for lithium ion batteries [J]. Journal of Polymer Science Part A:Polymer Chemistry,2012,50(24):5161-5169.
[46] Zhu Y,LI Y,Bettge M,et al. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society,2012,159(12):A2109-A2117.
[47] Aydin H,Senel M,Bozkurt A. PAMAM type dendritic electrolytes for lithium ion battery applications[J]. Solid State Ionics,2012,226:1-6.
[48] Basile A,Bhatt A I,O'mullane A P. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte[J]. Australian Journal of Chemistry,2012,65(11):1534-1541.
[49] Gellert M,Gries K I,Yada C,et al. Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: Microstructure and nonlinear ion transport properties[J]. Journal of Physical Chemistry C,2012,116(43):22675-22678.
[50] Henderson W A,Seo D M,Zhou Q,et al. An alternative ionic conductivity mechanism for plastic crystalline salt-lithium salt electrolyte mixtures [J]. Advanced Energy Materials,2012,2(11):1343-1350.
[51] Ounn R P,Kafle J,Krause F C,et al. Electrochemical analysis of Li-ion cells containing triphenyl phosphate[J]. Journal of the Electrochemical Society,2012,159(12):A2100-A2108.
[52] Takeuchi S,Yano S,Fukutsuka T,et al. Electrochemical intercalation/de-intercalation of lithium ions at graphite negative electrode in TMP-based electrolyte solution[J]. Journal of the Electrochemical Society,2012,159(12):A2089-A2091.
[53] Xu M Q,Lu D S,Garsuch A,et al. Improved performance of LiNi0.5Mn1.5O4 cathodes with electrolytes containing dimethylmethylphosphonate (DMMP) [J]. Journal of the Electrochemical Society,2012,159(12):A2130-A2134.
[54] Cresce A V,Borodin O,Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite[J]. Journal of Physical Chemistry C,2012,116(50):26111-26117.
[55] Kim S K,Kim D G,Lee A,et al. Organic/inorganic hybrid block copolymer electrolytes with nanoscale ion-conducting channels for lithium ion batteries [J]. Macromolecules,2012,45(23):9347-9356.
[56] Ong S P,Mo Y F,Richards W D,et al. Phase stability,electrochemical stability and ionic conductivity of the Li10+/- 1MP2X12 (M = Ge,Si,Sn,Al or P,and X = O,S or Se) family of superionic conductors [J]. Energy & Environmental Science,2013,6(1):148-156.
[57] Tenhaeff W E,Perry K A,Dudney N J. Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes[J]. Journal of the Electrochemical Society,2012,159(12):A2118-A2123.
[58] Leggesse E G,Jiang J C. Theoretical study of the reductive decomposition of ethylene sulfite:A film-forming electrolyte additive in lithium ion batteries[J]. Journal of Physical Chemistry A,2012,116(45):11025-11033.
[59] Hassoun J,Jung H G,Lee D J,et al. A metal-free,lithium-ion oxygen battery:A step forward to safety in lithium-air batteries[J]. Nano Letters,2012,12(11):5775-5779.
[60] Lim H,Yilmaz E,Byon H R. Real-time XRD studies of LiO2 electrochemical reaction in nonaqueous lithium-oxygen battery[J]. Journal of Physical Chemistry Letters,2012,3(21):3210-3215.
[61] Mccloskey B D,Scheffler R,Speidel A,et al. On the mechanism of nonaqueous LiO2 electrochemistry on C and its kinetic overpotentials:Some implications for Li-air batteries[J]. Journal of Physical Chemistry C,2012,116(45):23897-23905.
[62] Cao Y,Wei Z K,He J,et al. alpha-MnO2 nanorods grown in situ on graphene as catalysts for LiO2 batteries with excellent electrochemical performance[J]. Energy & Environmental Science,2012,5(12):9765-9768.
[63] Yang Y,Shi M,Li Y S,et al. MnO2-graphene composite air electrode for rechargeable Li-air batteries[J]. Journal of the Electrochemical Society,2012,159(12):A1917-A1921.
[64] Oh S H,Black R,Pomerantseva E,et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nature Chemistry,2012,4(12):1004-1010.
[65] Thotiyl M M O,Freunberger S A,Peng Z Q,et al. The carbon electrode in nonaqueous LiO2 cells[J]. Journal of the American Chemical Society,2013,135(1):494-500.
[66] Fu Y Z,Su Y S,Manthiram A. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries[J]. Acs. Applied Materials & Interfaces,2012,4(11):6046-6052.
[67] Cai K P,Song M K,Cairns E J,et al. Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries[J]. Nano Letters,2012,12(12):6474-6479.
[68] Duan L,Lu J C,Liu W Y,et al. Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:98-103.
[69] Zhang C F,Wu H B,Yuan C Z,et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition,2012,51(38):9592-9595.
[70] Lee K T,Black R,Yim T,et al. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials,2012,2(12):1490-1496.
[71] Eddahech A,Briat O,Woirgard E,et al. Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications[J]. Microelectronics Reliability,2012,52(9-10):2438-2442.
[72] Marinaro M,Mancini M,Nobili F,et al. A newly designed Cu/super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries[J]. Journal of Power Sources,2013,222:66-71.
[73] Dolotko O,Senyshyn A,Muhlbauer M J,et al. Fatigue process in Li-ion cells:An in situ combined neutron diffraction and electrochemical study[J]. Journal of the Electrochemical Society,2012,159(12):A2082-A2088.
[74] Xia L,Wang D D,Yang H X,et al. An electrolyte additive for thermal shutdown protection of Li-ion batteries[J]. Electrochemistry Communications,2012,25:98-100.
[75] Lu X,Sun Y,Jian Z L,et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1-x)CoO2 (0≤x≤0.5) nanoparticles [J]. Nano Letters,2012,12(12):6192-6197.
[76] Ferguson T R,Bazant M Z. Nonequilibrium thermodynamics of porous electrodes[J]. Journal of the Electrochemical Society,2012,159(12):A1967-A1985.
[77] Godbole V A,Hess M,Villevieille C,et al. Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries[J]. Rsc. Advances,2013,3(3):757-763.
[78] Brown D,Landers R G. Control oriented thermal modeling of lithium ion batteries from a first principle model via model reduction by the global arnoldi algorithm [J]. Journal of the Electrochemical Society,2012,159(12):A2043-A2052.
[79] Gachot G,Grugeon S,Eshetu G G,et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta,2012,83:402-409.
[80] Ganesh P,Kent P R C,Jiang D E. Solid-electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics[J]. Journal of Physical Chemistry C,2012,116(46):24476-24481.
[81] Koyama Y,Arai H,Tanaka I,et al. Defect chemistry in layered LiMO2 (M = Co,Ni,Mn,and Li1/3Mn2/3) by first-principles calculations [J]. Chemistry of Materials,2012,24(20):3886-3894.
[82] Lau K C,Assary R S,Redfern P,et al. Electronic structure of lithium peroxide clusters and relevance to lithium-air batteries[J]. Journal of Physical Chemistry C,2012,116(45):23890-23896.
[83] Ling C,Mizuno F. Capture lithium in alpha MnO2:Insights from first principles[J]. Chemistry of Materials,2012,24(20):3943-3951.
[84] Oishi M,Fujimoto T,Takanashi Y,et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure[J]. Journal of Power Sources,2013,222:45-51.
[85] Sun C H,Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. Journal of Physical Chemistry C,2012,116(50):26222-26226.
[86] Wu H,Cummings O T,Wick C D. Computational investigation on the effect of alumina hydration on lithium ion mobility in poly(ethylene oxide) LiClO4 electrolytes [J]. Journal of Physical Chemistry B,2012,116(51):14922-14932.
[87] Du J C,Chen C H. Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals [J]. Journal of Non-Crystalline Solids,2012,358(24):3531-3538.
[88] Gallagher K G,Dees D W,Jansen A N,et al. A volume averaged approach to the numerical modeling of phase-transition intercalation electrodes presented for LixC6 [J]. Journal of the Electrochemical Society,2012,159(12):A2029-A2037.
[89] Liivat A. Structural changes on cycling Li2FeSiO4 polymorphs from DFT calculations [J]. Solid State Ionics,2012,228:19-24.
[90] Sun Y,Lu X,Xiao R J,et al. Kinetically controlled lithium-staging in delithiated LiFePO4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials,2012,24(24):4693-4703.
[91] Yamakawa S,Yamasaki H,Koyama T,et al. Numerical study of Li diffusion in polycrystalline LiCoO2[J]. Journal of Power Sources,2013,223:199-205.
[92] Clark J M,Nishimura S,Yamada A,et al. High-voltage pyrophosphate cathode:Insights into local structure and lithium-diffusion pathways[J]. Angewandte Chemie-International Edition,2012,51(52):13149-13153.
[93] Geng W T,Ping D H,Nara J,et al. Formation of perpendicular graphene nanosheets on LiFePO4:A first-principles characterization[J]. Journal of Physical Chemistry C,2012,116(33):17650-17656.
[94] Ryou, M. H. et al. Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Electrochim Acta 83, 259-263, doi:10.1016/j.electacta.2012.08.012 (2012).
[95] Nagao M,Imade Y,Narisawa H,et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LiSiCoN solid electrolyte[J]. Journal of Power Sources,2013,222:237-242.
[96] Das S,Bhattacharyya A J. Time-temperature scaling of conductivity spectra of organic plastic crystalline conductors[J]. Journal of Physical Chemistry Letters,2012,3(23):3550-3554.
[97] Nokami T,Matsuo T,Inatomi Y,et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity[J]. Journal of the American Chemical Society,2012,134(48):19694-19700.
[98] Brushett F R,Vaughey J T,Jansen A N. An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials,2012,2(11): 1390-1396.
[99] Mayers M Z,Kaminski J W,Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. Journal of Physical Chemistry C,2012,116(50):26214-26221.
[100] La Mantia F,Huggins R A,Cui Y. Oxidation processes on conducting carbon additives for lithium-ion batteries[J]. Journal of Applied Electrochemistry,2013,43(1):1-7.



Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer