2013 publication

  1. Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries. Jian ZL, Han WZ, Lu X, Yang HX, Hu YS, Zhou J, Zhou ZB, Li JQ, Chen W, Chen DF, Chen LQ. Advanced Energy Materials, 2013, 3(2): 156-160. DOI: 10.1002/aenm.201200558
  2. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Pan HL, Hu YS, Chen LQ. Energy & Environmental Science, 2013, 6(8): 2338-2360. DOI: 10.1039/C3EE40847G
  3. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries.Sun Y, Zhao L, Pan HL, Lu X, Gu L, Hu YS, Li H, Armand M, Ikuhara Y, Chen LQ, Huang XJ. Nature communications, 2013, 4: 1870. DOI: 10.1038/ncomms2878
  4. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Suo LM, Hu YS, Li H, Armand M, Chen LQ. Nature communications, 2013, 4: 1481.DOI:  10.1038/ncomms2513
  5. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Wang YS, Yu SQ, Xu SY, Bai JM, Xiao RJ, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ. Nature communications, 2013, 4. DOI:  10.1038/ncomms3365
  6. A Size-Dependent Sodium Storage Mechanism in L(i)4Ti(5)O(12) Investigated by,a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation. Yu XQ, Pan HL, Wan W, Ma C, Bai JM, Meng QP, Ehrlich SN, Hu YS, Yang XQ. Nano letters, 2013, 13(10): 4721-4727. DOI:
  7. Size-controlled synthesis and morphology evolution of bismuth trifluoride nanocrystals via a novel solvent extraction route. Zhao JM, Pan HL, He X, Wang YS, Gu L, Hu YS, Chen LQ, Liu HZ, Dai S. Nanoscale, 2013, 5(2): 518-522. DOI:  10.1039/C2NR33212D
  8. Preparation and characterization of LiNi0.5Mn1.5O4-delta thin films taking advantage of correlations with powder samples behavior. Liping Wang , Hong Li , Matthieu Courty , Xuejie Huang , Emmanuel Baudrin.  Journal of Power Sources, 2013, 232: 165-172.  DOI:  http://dx.doi.org/10.1016/j.jpowsour.2012.10.099
  9. Perovskite Sr1−xCexCoO3−δ(0.05≤x≤0.15)as Superior Cathodes forIntermediate Temperature Solid Oxide Fuel Cells. Wei Yang, Tao Hong, Shuai Li, Zhaohui Ma, Chunwen Sun, Changrong Xia. ACS applied materials & interfaces, 2013, 5(3): 1143-1148. DOI: 10.1021/am3029238
  10. Three-Dimensional Hierarchical Architectures Constructed by Graphene/MoS2 Nanoflake Arrays and Their Rapid Charging/Discharging Properties as Lithium-Ion Battery Anodes. Hailong Yu, Chao Ma, Binghui Ge, Yujin Chen, Zheng Xu, Chunling Zhu, Chunyan Li, Qiuyun Ouyang, Peng Gao, Jianqi Li, Chunwen Sun, Lihong Qi, Yumei Wang, and Fanghua Li. Chemistry–A European Journal, 2013, 19(19): 5818-5823. DOI: 10.1002/chem.201300072
  11. Effect of Ni doping on the catalytic properties of nanostructured peony‐like CeO2. XIAN Cunni, WANG Shaofei, SUN Chunwen, LI Hong, CHAN Suiwai, CHEN Liquan. Chinese Journal of Catalysis, 2013, 34(2): 305-312. DOI:  http://dx.doi.org/10.1016/S1872-2067(11)60466-X
  12. Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Wei Yang, Jason Salim, Chao Ma, Zhaohui Ma, Chunwen Sun, Jianqi Li, Liquan Chen, Youngsik Kim. Electrochemistry Communications, 2013, 28: 13-16. DOI:  http://dx.doi.org/10.1016/j.elecom.2012.12.007
  13. 碳基燃料SOFC阳极材料研究进展. 孙春文,孙杰,杨伟,马朝晖,李帅,仙存妮,王少飞,肖睿娟,施思齐,李泓,陈立泉. 中国工程科学, 2013, 15(2): 77-87.
  14. 甲烷水蒸气重整反应研究进展. 孙杰,孙春文,李吉刚,周添,董中朝,陈立泉. 中国工程科学, 2013, 2: 98-106.
  15. Electrospinning La0.8Sr0.2Co0.2Fe0.8O3Ld tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode. Erqing Zhao, Chao Ma, Wei Yang, Yueping Xiong, Jianqi Li,Chunwen Sun. international journal of hydrogen energy, 2013, 38(6821): e6829.
  16. Graphene–MoO2 hierarchical nanoarchitectures: in situ reduction synthesis and high rate cycling performance as lithium-ion battery anodes. Yujin Chen, Xinpeng Di, Chao Ma, Chunling Zhu, Peng Gao, Jianqi Li, Chunwen Sun, Qiuyun Ouyang. RSC Advances, 2013, 3(39): 17659-17663. DOI: 10.1039/C3RA42319K
  17. Core-shell Structured Sr0.88Y0.08TiO3-Ce0.8Sm0.2O1.9 Composite as an Anode for Solid Oxide Fuel Cells Operating with CH4. Wei Yang, Zhaohui Ma, Chunwen Sun, and Liquan Chen. ECS Transactions, 2013, 57(1): 1313-1319.DOI: 10.1149/05701.1313ecst
  18. Synthesis and Electrochemical Performance of Graphene-like WS2. Fang XP, Hua CX, Wu CR, Wang XF, Shen LY, Kong QY, Wang JZ, Hu YS, Wang ZX, Chen LQ. Chemistry–A European Journal, 2013, 19(18): 5694-5700. DOI: 10.1002/chem.201204254
  19. Sulfur in hierarchically pore-structured carbon pillars as cathodematerial for lithium–sulfur batteries. Wang WF, Fang XP, Guo XW, Wang ZX, Chen LQ. Electrochimica Acta, 2013, 97: 238-243.DOI:   http://dx.doi.org/10.1016/j.electacta.2013.02.126
  20. Lithium storage in perovskite lithium lanthanum titanate. Hua CX, Fang XP, Wang ZX, Chen LQ. Electrochemistry Communications, 2013, 32: 5-8. DOI:  http://dx.doi.org/10.1016/j.elecom.2013.03.038
  21. Reduced graphene oxide film as a shuttle-inhibiting interlayerin a lithiumesulfur batterypolypyrrole. Wang WF, Wang ZX, Chen LQ. Journal of Power Sources, 2013, 242: 65-69. DOI:    http://dx.doi.org/10.1016/j.jpowsour.2013.05.063
  22. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conductingpolypyrrole. Wu CR, Fang XP, Guo XW, Mao Y, Ma Jun, Zhao CC, Wang ZX, Chen LQ. Journal of Power Sources, 2013, 231: 44-49. DOI: http://dx.doi.org/10.1016/j.jpowsour.2012.11.138
  23. Lithium storage in carbon-coated SnO2 by conversion reaction. Guo XW, Fang XP, Sun Y, Shen LY, Wang ZX, Chen LQ. Journal of Power Sources, 2013, 226: 75-81. DOI:  http://dx.doi.org/10.1016/j.jpowsour.2012.10.068
  24. Polypyrrole–NiO composite as high-performance lithium storagematerial. Mao Y, Kong QY, Guo BK, Shen L, Wang ZX, Chen LQ. Electrochimica Acta, 2013, 105: 162-169. DOI:  http://dx.doi.org/10.1016/j.electacta.2013.04.086
  25. Highly Ordered Mesoporous Crystalline MoSe 2 Materialwith Effi cient Visible-Light-Driven Photocatalytic Activityand Enhanced Lithium Storage Performance. Shi YF, Hua CX, Li B, Fang XP, Yao CH, Zhang YC, Hu YS, Wang ZX, Chen LQ, Zhao DY, Stucky GD. Advanced Functional Materials, 2013, 23(14): 1832-1838. DOI: 10.1002/adfm.201202144
  26. 高比能锂硫二次电池研究进展. 索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰. 科学通报, 2013, 58(31): 3172-3188.
  27. High performance MnO thin-film anodes grown byradio-frequency sputtering for lithium ion batteries. Cui ZH, Guo XX, Li H. Journal of Power Sources, 2013, 244: 731-735.  DOI:   http://dx.doi.org/10.1016/j.jpowsour.2012.11.071
  28. Improved electrochemical properties of MnO thin film anodesby elevated deposition temperatures: Study of conversion reactions. Cui Z H, Guo X X and Li H. Electrochimica Acta, 2013, 89: 229-238. DOI: http://dx.doi.org/10.1016/j.electacta.2012.10.164
  29. Temperature-dependent lithium storage behavior in tetragonalboron (B-50) thin film anode for Li-ion batteries.Ding X, Lu X, Fu Z. Electrochimica Acta, 2013, 87: 230-235. DOI:  http://dx.doi.org/10.1016/j.electacta.2012.09.017
  30. Molten salt electrolyte based on alkalibis(fluorosulfonyl)imides for lithium batteries. Liu Y L, Zhou S S, Han H B, Li H, Nie J, Zhou Z B, Chen L Q and Huang X J. Electrochimica Acta, 2013, 105: 524-529. DOI: http://dx.doi.org/10.1016/j.electacta.2013.05.044
  31. Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 andImplications for the Solid Electrolyte Interphase in Li-Ion Batteries. Shi S Q, Qi Y, Li H and Hector L G. The Journal of Physical Chemistry C, 2013, 117(17): 8579-8593. DOI: 10.1021/jp310591u
  32. Two-Phase Electrochemical Lithiation in Amorphous Silicon. Wang J W, He Y, Fan F F, Liu X H, Xia S M, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T. Nano Letters, 2013, 13(2): 709-715. DOI: 10.1021/nl304379k
  33. Electrochemical performances and volume variation ofnano-textured silicon thin films as anodes for lithium-ion batteries. Wang Y H, Liu Y P, Zheng J Y, Zheng H, Mei Z X, Du X L and Li H. Nanotechnology, 2013, 24(42): 424011.  DOI:  10.1088/issn.0957-4484
  34. A CoOx/carbon double-layer thin film air electrode fornonaqueous Li-air batteries. Yang Y, Sun Q, Li Y S, Li H and Fu Z W. Journal of Power Sources, 2013, 223: 312-318. DOI:  http://dx.doi.org/10.1016/j.jpowsour.2012.09.052
  35. Graphite microspheres decorated with Si particles derivedfrom waste solid of organosilane industry as high capacity anodes for Li-ionbatteries. Yu J, Zhan H H, Wang Y H, Zhang Z L I, Chen H, Li H, Zhong Z Y and Su F B. Journal of Power Sources, 2013, 228: 112-119. DOI:  http://dx.doi.org/10.1016/j.jpowsour.2012.11.083
  36. Growth of silicon/carbon microrods on graphite microspheresas improved anodes for lithium-ion batteries. Zhu X Y, Chen H, Wang Y H, Xia L H, Tan Q Q, Li H, Zhong Z Y, Su F B and Zhao X S. Journal of Materials Chemistry A, 2013, 1(14): 4483-4489.   DOI: 10.1039/C3TA01474F
  37. Amorphous silicon-carbon nanospheres synthesized by chemicalvapor deposition using cheap methyltrichlorosilane as improved anode materialsfor Li-ion batteries. Zhang Z L, Zhang M J, Wang Y H, Tan Q Q, Lv X, Zhong Z Y, Li H and Su F B. Nanoscale, 2013, 5(12): 5384-5389.   DOI: 10.1039/C3NR00635B
  38. 锂电池基础科学问题(I)——化学储能电池理论能量密度的估算. 彭佳悦,祖晨曦,李泓.储能科学与技术, 2013 (1): 55-62.
  39. 锂电池基础科学问题(III)——相图与相变. 高健,吕迎春,李泓. Energy, 2013, 2(3).
  40. 锂电池基础科学问题(V)——电池界面. 郑杰允,李泓. 储能科学与技术, 2013 (5): 503-513.
  41. 锂电池基础科学问题(Ⅱ)——电池材料缺陷化学. 卢侠,李泓. 储能科学与技术, 2013 (2): 157-164.
  42. 锂电池基础科学问题(IV)——相图与相变(2). 高健,吕迎春,李泓. Energy, 2013, 2(4).
  43. 锂电池基础科学问题(VI)——离子在固体中的输运. 郑浩,高健,王少飞,李泓. 储能科学与技术, 2013, 6: 013.





Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer