可穿戴双极型可充铝电池研究进展

  可穿戴电子器件和柔性屏的蓬勃发展推动着对先进柔性储能器件的不断研究。为了满足柔性和便携性的双重要求,柔性电池需要在电极材料选取和电池结构设计上同时具备良好的柔性,高能量密度和较好的安全性能。目前大部分柔性电池的研究主要针对于柔性材料和组件的开发,在电池整体结构上仍旧沿袭传统单极型设计,并且为了维持电池整体的柔性,导电性和连接性,往往引入大量额外的非活性组件,致使电池能量密度大大降低。鉴于此,针对可穿戴电池的应用特点进行电池结构上的创新设计尤为重要。

一种高容量钠离子电池层状氧化物模型材料

  由于钠资源储量丰富且成本低廉,室温钠离子电池在未来大规模储能应用上表现出巨大的潜力,近两年已经在低速电动车和储能电站上成功实现了应用示范。O3层状过渡金属氧化物具备制备工艺简单、比容量高、首周库仑效率高和环境友好等优点,得到了研究人员的广泛关注。为了进一步发展具有高容量和长循环性能的钠离子电池正极材料,开发高镍O3-NaTMO2正极材料有望成为解决这一问题的有效策略。目前锂离子电池NCM(镍钴锰)材料体系中的Ni含量已经可以提高到80%以上,无钴高镍正极也是目前锂离子电池的重要攻坚方向,但是进一步降低Co元素的含量遇到了很大的技术瓶颈,这也限制了其材料成本的进一步下降。在钠离子电池体系中情况却有所不同,由于Ni和Na的半径差异较大,在层状氧化物中几乎不存在Ni和Na互占位现象,这表明开发高性能的无钴高镍的钠离子电池层状氧化物正极具有较大可能。

水系钠离子电池研究取得重要进展

  水系钠离子电池兼具钠资源储量丰富和水系电解液本质安全的双重优势被视为一种理想的大规模静态储能技术。此前,我们针对这水系钠离子电池体系做了一些探索(Nature Communications 2015, 6, 6401;Advanced Energy Materials 2015, 5, 1501005;Advanced Energy Materials 2017, 7, 1701189)。目前水系钠离子电池主要受到水系电解液电压窗口窄(小于2 V)的制约,进而限制了水系钠离子电池的输出电压、能量密度和循环寿命等关键电化学性能指标提升,因此如何开发出宽电压窗口水系电解液是实现高性能的水系钠离子电池关键核心技术。

电化学活性多功能隔膜涂层提升锂硫电池研究进展

  与现有锂离子电池体系相比,锂硫电池具有更高的理论能量密度、更低的成本和环境友好等优势,是下一代高比能电池体系的理想候选之一。硫(S8)是典型的阴离子变价的转换反应正极材料,优点是理论容量高,但缺点在于电化学反应的中间态产物多硫化锂极易溶于醚类电解液,穿梭到金属锂负极发生不可逆反应,被称为“穿梭效应”,是限制锂硫电池循环寿命的最重要原因。同时,在放电过程中,液态的多硫化锂会形成Li2S绝缘层覆盖在正极表面,阻碍电子和离子的传导,使电池的倍率性能下降。因此,解决这些问题的关键在于有效控制多硫化锂的迁移。

聚合物固态钠电池研究取得重要进展

  固态电池是发展下一代高安全、高能量密度电池的关键技术。在发展固态电池的技术路线中,聚合物电解质由于具有良好的柔韧性,有利于在电极与电解质之间形成良好的界面接触,能够承受电极材料在充放电过程中的体积形变,且质量轻、易于加工,适合大规模生产,受到学术界研究人员的广泛关注。聚合物固体电解质(SPE)传统制备工艺流程通常是溶液溶解浇筑-自然风干成膜-真空高温烘干去溶剂。然而由于真空高温烘干为单纯物理方法很难将SPE膜中残余的溶剂分子100%去除(图1a),残留的液体会导致电池在随后的循环过程中发生溶剂分子分解以及在界面处与电极发生副反应,从而导致界面阻抗增大、极化增大、循环寿命和库伦效率低等一系列问题。

4.6V高电压钴酸锂锂离子电池正极材料研究进展

水系钾离子电池研究取得重要进展

3D无序阳离子骨架实现锂离子电池稳定氧变价反应

Vistors

Languages

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer